Design of a stable adaptive controller for driving aerobic fermentation processes near maximum oxygen transfer capacity

نویسندگان

  • R. Oliveira
  • R. Simutis
  • S. Feyo de Azevedo
چکیده

In many industrial fermentation processes oxygen availability is the main limiting factor for product production. Typically the dissolved oxygen (DO) concentration decreases continuously at the beginning of the batch until it reaches a critical level where the oxygen transfer rate is very close to the vessel’s maximum transfer capacity. The process may be further driven close to this sensitive operating point with a controller that manipulates the carbon source feed rate. This operating strategy is linked with important productivity issues and is still frequently realised in open-loop at production scale. The main purpose of the present study is to derive an effective closed-loop control solution and to demonstrate its economical advantage in relation to the open-loop form of operation. A stable model reference adaptive controller (MRAC) was designed based on a phenomenological model of the process. The implementation requires two on-line measurements: the DO tension and oxygen transfer rate (OTR) between gas–liquid phases, which are nowadays standard and easily available in production facilities. The controller performance is accessed with a simulation case study. The main results show that the adaptive controller is precise, stable and robust to disturbances and to inaccuracies like variability in raw materials typical in fermentations run in complex media. The controller is simple, easy to implement, and could possibly improve productivity in processes for which oxygen transfer capacity is limiting growth and product production. 2004 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Unified IMC based PI/PID Controller Tuning Approach for Time Delay Processes

This paper proposes a new PI/PID controller tuning method within filtered Smith predictor (FSP) configuration in order to deal with various types of time delay processes including stable, unstable and integrating delay dominant and slow dynamic processes. The proposed PI/PID controller is designed based on the IMC principle and is tuned using a new constraint and without requiring any approxima...

متن کامل

Fractional order Adaptive Terminal Sliding Mode Controller Design for MPPT in a Solar Cell under Normal and Partial Shading Condition

In this paper, by combining fractional calculus and sliding mode control theory, a new fractional order adaptive terminal sliding mode controller is proposed for the maximum power point tracking in a solar cell. To find the maximum power point, the incremental conductance method has been used. First, a fractional order terminal sliding mode controller is designed in which the control law depend...

متن کامل

Modelling and Adaptive Control of Aerobic Continuous Stirred Tank Reactors

A biotechnological aerobic process is modelled as an ordinary diierential equation which, under mild assumptions, ensures invariance of the positive orthant and bound-edness of the concentrations. An adaptive controller is designed for this general class of processes so that the external substrate can be regulated by the dilution rate into a prespeciied arbitrarily small neighbourhood of a cons...

متن کامل

Maximum Power Point Tracking of the Photovoltaic System Based on Adaptive Fuzzy-Neural Method

The aim of this paper was to present an optimized method in order to use maximum capacity of the photovoltaic panels. In this regard, we presented a method for the maximum power point tracking in the photovoltaic systems by using the neural networks and adaptive controller. In the proposed system, we estimated an error by using neural network. If this error is lower than the allowable systems e...

متن کامل

Adaptive Input-Output Linearization Control of pH Processes

pH control is a challenging problem due to its highly nonlinear nature. In this paper the performances of two different adaptive global linearizing controllers (GLC) are compared. Least squares technique has been used for identifying the titration curve. The first controller is a standard GLC based on material balances of each species. For implementation of this controller a nonlinear state...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004